
Approximation Algorithms

Momin and Rex

September 2025

Contents

1 Introduction 3
1.1 Exercise 1.1 . 3
1.2 Exercise 1.2 . 3
1.3 Exercise 1.3 . 4
1.4 Exercise 1.7 . 5
1.5 Exercise 1.8 . 5

2 Set Cover 6
2.1 Exercise 2.1 . 6
2.2 Exercise 2.2 . 7
2.3 Exercise 2.13 . 8
2.4 Exercise 2.14 . 10

3 Steiner Tree and TSP 11
3.1 Exercise 3.1 . 11
3.2 Exercise 3.3 . 11
3.3 Exercise 3.5 . 12
3.4 Exercise 3.6 . 13

4 Multiway Cut and k-Cut 14
4.1 Exercise 4.1 . 14
4.2 Exercise 4.3 . 14
4.3 Exercise 4.4 . 16
4.4 Exercise 4.7 . 16

5 k-Center 17
5.1 Exercise 5.1 . 17
5.2 Exercise 5.2 . 17
5.3 Exercise 5.3 . 19
5.4 Exercise 5.4 . 20

1

6 Feedback Vertex Set 22
6.1 Exercise 6.1 . 22
6.2 Exercise 6.2 . 23

7 Shortest Superstring 23
7.1 Exercise 7.1 . 23
7.2 Exercise 7.2 . 24

8 Knapsack 24
8.1 Exercise 8.1 . 24
8.2 Exercise 8.2 . 25
8.3 Exercise 8.3 . 26
8.4 Exercise 8.4 . 27

9 Bin Packing 28
9.1 Exercise 9.1 . 28
9.2 Exercise 9.2 . 29
9.3 Exercise 9.4 . 29
9.4 Exercise 9.6 . 30
9.5 Exercise 9.9 . 30

10 Minimum Makespan Scheduling 31
10.1 Exercise 10.1 . 31
10.2 Exercise 10.2 . 32

11 Euclidean TSP 33
11.1 Exercise 11.1 . 33
11.2 Exercise 11.2 . 34
11.3 Exercise 11.4 . 35
11.4 Exercise 11.6 . 36

2

This document provides, or attempts to provide, solutions to some of the
problems from ”Approximation Algorithms” by Vijay V. Vazirani. We aim to
solve at least 4 questions from each section (unless a section contains fewer than
4 questions).

1 Introduction

1.1 Exercise 1.1

Give a factor 1/2 algorithm for the following.
(Acyclic subgraph) Given a directed graph G = (V,E), pick a maximum cardi-
nality set of edges from E so that the resulting subgraph is acyclic.

Algorithm

Give V an arbitrary (strict total) order. We can then write V = {v1, ..., vn}.
We obtain the following two subsets of E:

Ef = {(vi, vj) | i < j}, (1)

Eb = {(vi, vj) | i > j}. (2)

Obviously, G[Ef] and G[Eb] are both acyclic. We answer with the larger of the
two.

Time Complexity

O(m).

Approximation Factor

Let GOPT = (VOPT , EOPT) be the optimal subgraph of G. For each (vi, vj)
in EOPT , either i < j or i > j. In other words, EOPT ⊆ Ef ∪ Eb, and thus
|EOPT | ≤ |Ef |+ |Eb|. This means

max{|Ef |, |Eb|} ≥
|EOPT |

2
. (3)

1.2 Exercise 1.2

Design a factor 2 approximation algorithm for the problem of finding a minimum
cardinality maximal matching in an undirected graph.

Algorithm

Greedily keep selecting legal edges until you can not.

3

Time Complexity

This is clearly O(E).

Approximation Factor

Consider the graph G′ formed by interpolating GOPT and GALG (allowing par-
allel edges).
Note that for all v ∈ V, deg(v) ≤ 1 in both graphs =⇒ degG′(v) ≤ 2. Moreover,
let D1, D2 be the vertices in G′ with degree 1, 2 respectively. Then

|D1| ≤ |ALG| , |D2| ≤ 2|OPT |

. Then, it follows that

|ALG| = 1

2

∑
v∈V

degGALG
(v)

=
1

2

∑
v∈V

degG′(v)− degGOPT
(v)

≤ 1

2
(2|D2|+ |D1|)−

1

2

∑
v∈V

degGALG
(v)

≤ 2|OPT |

which is what we wanted.

1.3 Exercise 1.3

(R. Bar-Yehuda) Consider the following factor 2 approximation algorithm for
the cardinality vertex cover problem. Find a depth first search tree in the given
graph, G, and output the set, say S, of all the nonleaf vertices of this tree. Show
that S is indeed a vertex cover for G and |S| ≤ 2 ·OPT .

Solution

We first show that G is indeed a vertex cover. Assume otherwise, then ∃e =
(u, v) s.t. e /∈ S =⇒ both u, v are leaves in the depth-first search tree. However
since u and v are connected, either u is visited before v or vice versa =⇒ either
u or v is not a leaf - which is the required contradiction.
To show the approximation factor, we will show that G has a matching of size
|S| so that

|S| = |M | ≤ 2.OPT

by including both vertices of the matching since it is clearly a valid vertex cover.
We form a matching by selecting an edge for each v ∈ S. Assume that this is not
a matching, so ∃e = (u, v) s.t. e+M is a matching. However, we showed that
either u is a non-leaf or v is. In either cases, either deg(u) = 1 or deg(v) = 1 -
hence e+M is not a matching.

4

1.4 Exercise 1.7

Let A = {a1, ..., an} be a finite set, and let ≤ be a relation on A that is reflexive,
antisymmetric, and transitive. Such a relation is called a partial ordering of A.
Two elements ai, aj ∈ A are said to be comparable if ai ≤ aj or aj ≤ ai. Two
elements that are not comparable are said to be incomparable. A subset S ⊆ A
is a chain if its elements are pairwise comparable. If the elements of S are
pairwise incomparable, then it is an antichain. A chain (antichain) cover is a
collection of chains (antichains) that are pairwise disjoint and cover A. The size
of such a cover is the number of chains (antichains) in it. Prove the following
min-max result: the size of a longest chain equals the size of a smallest antichain
cover.

Solution

Let M be the size of a longest chain in A, and m be the size of a smallest
antichain cover. Define ϕ(a) to be the size of the longest chain starting at a for
some a ∈ A. Next, let Φk = {a | ϕ(a) = k}. It is clear that Φ1, ...,ΦM form a
partition of A. Note that in for k ∈ {1, ...,M}, Φk is an antichain. To see this,
suppose a, b ∈ Φk are comparable, and let A and B be the chains implied by ϕa

and ϕb respectively. Without loss of generality, suppose a ≤ b. Then inserting
a before B already produces a larger chain than A, which is a contradiction. As
such, M ≥ m.

Now, suppose there is a chain (ac1 , ..., ack) such that k > m. By the pigeon-
hole principle, there must be aci and acj in the same antichain, where ci < cj .
However, by transitivity, aci ≤ acj , so this is impossible. This proves m ≤ M ,
and thus m = M .

1.5 Exercise 1.8

(Dilworth’s theorem) Prove that in any finite partial order, the size of a largest
antichain equals the size of a smallest chain cover.

Solution

Build the graph G = (W,E) as follows:

1. Add ui, vi to V for every i ∈ {1, ..., n}.

2. Add {ui, vj} to E for every i, j ∈ {1, ..., n} if ui < vj .

We claim that

1. n− |smallest vertex cover| ≤ |largest antichain|,

2. |largest antichain| ≤ |smallest chain cover|, and

3. |smallest chain cover| ≤ n− |maximum matching|.

5

If all are true, then the statement is true by König’s Theorem. We first show
(1). Let U = {ui} and V = {vi}, C be a vertex cover of G, and I = W \ C
be the implied independent set. For any set X, define XU = {i | ui ∈ X ∩ U},
XV = {i | vi ∈ X ∩ V }. Consider M = IU ∩ IV . For any distinct i, j ∈ M , by
construction, both {ui, vj} and {uj , vi} are not in E, which means ai and aj
are not comparable. As such, M is an antichain. Consider that

|largest antichain| ≥ |M | = |IU ∩ IV | (4)

= |{1, ..., n} \ (CU ∪ CV)| (5)

≥ n− |C|. (6)

(2) can be easily shown using the pigeonhole principle.
For (3), given any matching M , we build a corresponding chain cover. Let

G = (A,R) be a directed graph, where (ai, aj) ∈ R if and only if {ui, vj} ∈
M . Define ∼ to be a relation on A such that ai ∼ aj if and only if aj is
reachable from ai (denoted ai → aj), or the reverse. We verify that it is an
equivalence relation: reflexivity and symmetry follow directly from definition.
For transitivity, suppose ai ∼ aj and aj ∼ ak. The case is trivial when ai →
aj → ak. If ai → aj and ak → aj , suppose the respective paths are (ai =
u1, ..., aj = up) and (ak = v1, ..., aj = uq). If ai ̸= ak, there must be a smallest
k such that up−k ̸= vq−k. However, this would imply that both {up−k, up−k+1}
and {vq−k, vq−k+1} are in M . By construction, up−k+1 = vq−k+1, leading to a
contradiction. The case is similar when aj → ai and ai → ak. Observe that
A/ ∼ is exactly a chain cover of A, and every edge in M decreases the number
of equivalence classes by 1. As such,

|smallest chain cover| ≤ |A/ ∼ | = n− |M |. (7)

2 Set Cover

2.1 Exercise 2.1

Given an undirected graph G = (V,E), the cardinality maximum cut problem
asks for a partition of V into sets S and S so that the number of edges running
between these sets is maximized. Consider the following greedy algorithm for
this problem. Here v1 and v2 are arbitrary vertices in G, and for A ⊂ V, d(v,A)
denotes the number of edges running between vertex v and set A.

6

Algorithm 1: 1
2 approximation algorithm for cardinality maximum

cut problem

Data: Vertices V , initial vertices v1, v2
Result: Initialized sets A and B
Initialize A← {v1}, B ← {v2};
for v ∈ V \ {v1, v2} do

if d(v,A) ≥ d(v,B) then
B ← B ∪ {v};

end
else

A← A ∪ {v};
end

end
return A,B

Show that this is a factor 1
2 approximation algorithm and give a tight ex-

ample. What is the upper bound on OPT that you are using? Give examples
of graphs for which this upper bound is as bad as twice OPT. Generalize the
problem and the algorithm to weighted graphs.

Solution

We first show that this achieves a 1
2 - factor approximation.

Let v3 . . . vn be the order in which the vertices are assigned in the partition and
consider the first vk where it differs from OPT and consider the graph induced
by {v1, . . . , vk}. WLOG assume vk ∈ A in ALG but vk ∈ B in OPT . Then by
construction, it is clear that switching it can at most double the weight (proved
in exercise 2.2).
By induction on n, we have that

|OPT | ≤ 2 · |OPT |

which is what we wanted.
To generalize this, we just define

d(v,A) =
∑

e=v,us.t. u∈A

w(e)

, and a similar argument follows.

2.2 Exercise 2.2

Consider the following algorithm for the maximum cut problem, based on the
technique of local search. Given a partition of V into sets, the basic step of the
algorithm, called flip, is that of moving a vertex from one side of the partition
to the other. The following algorithm finds a locally optimal solution under the
flip operation, i.e., a solution which cannot be improved by a single flip. The

7

algorithm starts with an arbitrary partition of V . While there is a vertex such
that flipping it increases the size of the cut, the algorithm flips such a vertex.
(Observe that a vertex qualifies for a flip if it has more neigh- bors in its own
partition than in the other side.) The algorithm terminates when no vertex
qualifies for a flip. Show that this algorithm terminates in polynomial time, and
achieves an approximation guarantee of 1

2 .

Solution

Running time: First note that

OPT ≤ E

. At each iteration,
ALGi+1 ≥ ALGi + 1

, since we only switch if we get an increase. Each iteration takes O(V) time and
we have O(E) iterations =⇒ running time is O(V E).
Analysis: We claim that

OPT ≤ 2 ·ALG

. Let AALG = {v1 . . . vk} and similarly AOPT = {u1 . . . u
′
k}. Note that we

can achieve the optimum configuration by doing the flips. However, for each
vi ∈ AALG we have

d(v,A) ≤ d(v,B) = E(v)

where d(v,A) represents the neighbors of v in A and E(v) represents the cut
edges from v.
Therefore, at flip, we can at most have

E(v) = d(v,A) + d(v,B) ≤ 2d(v,B)

. Therefore, we have

ALG =
∑

v∈AALG

E(v) ≤ 1

2

∑
v∈AOPT

E(v) =
1

2
·OPT

2.3 Exercise 2.13

Use layering to get a factor f approximation algorithm for set cover, where f
is the frequency of the most frequent element. Provide a tight example for this
algorithm.

Solution

Let the universal set be U = {x1, ..., xn}, and the covers be C = C1, ..., Ck ⊆ U .
We will assume that U = C1∪ ...∪Ck. Define C(x) = {Ci | x ∈ Ci} and f(x) =
|C(x)|, i.e. the covers and frequency of any x ∈ U . Clearly, f = maxx∈U f(x).
Let c : C → Q≥0 be the cost function. We say c is size-weighted if for any C ∈ C,
c(C) = k · |C| for some fixed k ∈ Q≥0.

8

Lemma 1. If c is size-weighted, any solution is an f -approximation.

Proof. For any solution S ⊆ C,

c(S) = k
∑
C∈S

|C| ≤ k
∑
C∈C
|C| = k

∑
x∈U

f(x) ≤ kf · |U | ≤ f ·OPT. (8)

Our algorithm is as follows:

Algorithm 2: An f -approximation algorithm for set cover.

W,Z ← ∅;
while U ̸= ∅ do

i← iteration count (starting at 0);
Ci ← C;
Ui ← U ;
Zi ← {j | Cj = ∅ ∈ C};
Z ← Z ∪ Zi;
C ← C \ {Cj | j ∈ Zi};
ci ← (C 7→ minCj∈C{c(Cj)/|Cj |} · |C|);
c← c− ci;
Wi ← {j | c(Cj) = 0, Cj ∈ C};
W ←W ∪Wi;
C ← C \ {Cj | j ∈Wi};
U ← U \ {x ∈ Cj | j ∈ Zi ∪Wi};

end
return W ;

The algorithm is clearly polynomial. We first prove its correctness. Suppose
there exists x ∈ U that is not covered by W . Let C(x) = {Ck1

, ..., Ckf(x)
}, in

the order in which the covers are removed from C. By construction, C(x) ⊆ Z.
However, when Ck1 is removed in the Zi step, u is still not removed from U .
This means that u ∈ Ck1 and Ck1 ̸= ∅, which is a contradiction.

To show the approximation factor, observe that for C ∈W , if C ∈Wi,

c(C) =

i∑
j=0

cj(C). (9)

For C ∈ C \W = Z, because it is removed before its cost is completely decom-
posed, if C ∈ Zi,

c(C) ≥
i∑

j=0

cj(C). (10)

9

Suppose the algorithm ends after the kth iteration. Let W ∗ be the optimal set
cover. Note that W ∗ ∩ Cj for Uj for every j ∈ {0, ..., k}. Therefore,

c(W) =

k∑
j=0

cj(Wj) (11)

≤
k∑

j=0

cj(Cj) (12)

≤ f ·
k∑

j=0

OPT (Uj , Cj , cj) (Lemma 1) (13)

≤ f ·
k∑

j=0

cj(W
∗ ∩ Cj) (14)

≤ f · c(W ∗). (15)

For a tight example, considerKf
n,...,n, i.e. the complete f -partite f -hypergraph

with n vertices in each partition. Its corresponding instance in set cover is
U = {x1,1, ..., x1,n, ..., xf,1, xf,n}, C = {{x1,i1 , ..., xf,if } ∈ U} and the unit cost
function. Since the cost function is size-weighted, our algorithm chooses the
entirety of U , but the optimal solution is obviously any one partition.

2.4 Exercise 2.14

A tournament is a directed graph G = (V,E), such that for each pair of vertices,
u, v ∈ V , exactly one of (u, v) and (v, u) is in E. A feedback vertex set for G
is a subset of the vertices of G whose removal leaves an acyclic graph. Give a
factor 3 algorithm for the problem of finding a minimum feedback vertex set in
a directed graph.

Solution

We start with the following key observation:

Lemma 2. Every cycle in a tournament contains a 3-cycle.

Proof. Consider the cycle C = (v1, ..., vk, v1). Since G is not a multigraph,
k ≥ 3. When k = 3, the lemma is trivial. Otherwise, there are two cases: first,
if (v2, vk) ∈ E, then (v1, v2, vk) is already our desired 3-cycle. If (vk, v2) is in E,
however, then we can build a k−1-cycle (v2, ..., vk, v2). Therefore, by induction,
we can always obtain a 3-cycle.

Therefore, for every instance of feedback vertex set, we can derive an equiv-

10

alent instance of set cover:

U = {{v1, v2, v3} | (v1, v2), (v2, v3), (v3, v1) ∈ E}, (16)

C = {{x ∈ U | v ∈ x} | v ∈ V }, (17)

c = C 7→ w(v). (18)

More explicitly, U is all 3-cycles in G, and each vertex v in G translates to a
cover that includes all 3-cycles v is in. It is easy to see with Lemma 2 that the
optimal costs of the two instances are identical. Clearly, each 3-cycle appears in
exactly three covers. Consequently, we can use our algorithm in Exercise 2.13
to give a 3-approximation.

3 Steiner Tree and TSP

3.1 Exercise 3.1

The hardness of the Steiner tree problem lies in determining the optimal subset
of Steiner vertices that need to be included in the tree. Show this by proving
that if this set is provided, then the optimal Steiner tree can be computed in
polynomial time.

Solution

We simply find MST of the graph induced by R ∪ O, where R is the set of
required vertices and O is the given set of optimal vertices.
Assume the optimal solution is such that

OPT < ALG

, then note that both ALG and OPT are spanning trees on the same vertices.
This is a contradiction since ALG is the minimum spanning tree.

3.2 Exercise 3.3

Give an approximation factor preserving reduction from the set cover problem
to the following problem, thereby showing that it is unlikely to have a better
approximation guarantee than O(logn).
Problem 3.14 (Directed Steiner tree) G = (V,E) is a directed graph with
nonnegative edge costs. The vertex set V is partitioned into two sets, required
and Steiner. One of the required vertices, r, is special. The problem is to find
a minimum cost tree in G rooted into r that contains all the required vertices
and any subset of the Steiner vertices.

Solution

Consider an instance of the set cover problems (U, S). We will transform it into
an instance of the directed Stiener tree problem to show that it is just as hard.

11

Consider the graph with V = r ∪ U ∪ S. For each s ∈ S. For each s ∈ S,

∃e = (s, u)∀u ∈ U,w(e) = 0 , ∃e = (s, r), w(e) = w(s)

, and there are no other edges. The set of required vertices is simply the set U .
Consider the optimal solution for the instance of the set cover OPTS . Then,
we claim that the following solution (with the same cost) is optimal for the
corresponding directed Stiener tree instance OPTT :

OPTS = {∪s∈OPTS
((r, s) ∪ (∪v∈s(s, v))}

Assume otherwise, then selecting the corresponding s ∈ OPTS leads to a so-
lution with a better cost for the set cover instance - which contradicts the
optimality OPTS .
Therefore, if we can solve directed Steiner tree problem with factor c, we can
solve the set cover problem with factor c as well by the given reduction =⇒ it
is unlikely to have a better guarantee than O(logn)

3.3 Exercise 3.5

(Papadimitriou and Yannakakis) Let G be a complete undirected graph in which
all edge lengths are either 1 or 2 (clearly, G satisfies the triangle inequality).
Give a 4/3 factor algorithm for TSP in this special class of graphs.

Solution

We start by finding an optimal cycle cover of G. In other words, we would like
to find a set C = {C1, ..., Ck} of disjoint cycles such that ∪C = V , at minimum
c(C). This is known to be solvable in polynomial time. Next, define C as the
subgraph that encapsulates G without its edges. For every cycle Ci in C, define
an arbitrary order for its vertices such that Ci = (ci,1, ..., ci,|Ci|, ci,1). Add the
edges (ci,1, ci,2), ..., (ci,|Ci−1|, ci,|Ci|), (ci,|Ci|, cj,1) to C, where j = (i+ 1)mod k.
As the cycles in C are disjoint, this produces a Hamiltonian cycle. Observe that
as there are no parallel edges in G, each cycle is at least of size 3. In other
words, k ≤ n/3 and

c(C) =

k∑
i=0

c(Ci)− c((ci,|Ci|, ci,1)) + c((ci,|Ci|, cj,1)) (19)

≤
k∑

i=0

c(Ci) + 1 (20)

≤ c(Ci) + n/3. (21)

As the optimal solution C∗ is also a cycle cover, and the minimum cost of each
edge is 1,

OPT = c(C∗) ≥ c(Ci) ≥ n. (22)

Combining the two gives c(C) ≤ 4/3 · c(C∗), giving a 4/3 approximation factor
for our algorithm.

12

3.4 Exercise 3.6

(Frieze, Galbiati, and Maffioli) Give an O(logn) factor approximation algorithm
for the following problem.

Problem 1. (Asymmetric TSP) We are given a directed graph G on vertex set
V, with a nonnegative cost specified for edge (u→ v), for each pair (u, v) ∈ V .
The edge costs satisfy the directed triangle inequality, i.e., for any three vertices
u, v, and w, c(u → v) ≤ c(u → w) + c(w → v). The problem is to find a
minimum cost cycle visiting every vertex exactly once.

Solution

We describe our algorithm below:

Algorithm 3: An O(log n)-approximation algorithm for asymmetric
TSP.

function main(G, c):
if |G| = 1 then

return G;
else
C ← minimum-cost cycle cover of G;
G′ ← G;
in G′, contract every cycle in C into a vertex;
u : C → V (G);
for Ci ∈ C do

/* we pick an arbitrary vertex in every cycle as the ”start” */
u(Ci)← any v ∈ Ci;

end
c′ : E(G′)→ Q≥0;
for Ci, Cj ∈ C, Ci ̸= Cj do

c′((Ci, Cj))← c(u(Ci), u(Cj));
end
C ′ ← main(G’,c’);
C ← empty path;
for Ci ∈ C ′ do

append u(Ci), ...,pred(u(Ci)) to C;
end
close C as a cycle;
return C ;

return main(G, c);

The algorithm obvious always produces an Hamiltonian cycle. To show the
approximation factor, observe that the cost of C can be divided into two parts:

1. ones within the cycle, plus c((pred(u(Ci)), u(Ci))) for each Ci ∈ C ′, and

13

2. the ”connecting edges” between cycles in the cover, minus the extra term
in (1).

Denote their costs by c1 and c2 respectively. Let C∗ = (c1, ..., cn, c1) be the
optimal Hamiltonian cycle. Note that C∗ is itself a cycle cover, so c1 ≤ OPT =
c(C∗). Next, let (u1, ..., uk) be the sorted version of u in the order of appearances
in C∗. By the triangle inequality,

c2 =
∑

(i,j)∈{(1,2),...,(k−1,k),(k,1)}

c((pred(u(Ci)), u(Cj)))− c((pred(u(Ci)), u(Ci)))

(23)

≤
∑

c((pred(u(Ci)), u(Ci), u(Cj)))− c((pred(u(Ci)), u(Ci))) (24)

=
∑

c((u(Ci), u(Cj))). (25)

Now let E(n) be the maximum error of the algorithm on graphs of n vertices.
By the triangle inequality, we know that c((u1, ..., uk, u1)) ≤ OPT . Also note
that (u1, ..., uk, u1) corresponds to an Hamiltonian cycle in G′. As such,

E(n) = c1 + c2 −OPT ≤ c2 ≤ OPT + E(|V (G′)|). (26)

Each cycle has a size of at least 2, so we have E(n) = OPT · log n. In other
words, this algorithm has an approximation factor of O(logn).

4 Multiway Cut and k-Cut

4.1 Exercise 4.1

Show that Algorithm 4.3 can be used as a subroutine for finding a k-cut within a
factor of 2−2/k of the minimum k-cut. How many subroutine calls are needed?

Solution

The algorithm is simply to try all k combinations of the n vertices as the termi-
nals and take the cost-minimal cut. As the optimal k-cut must be one of them,
the approximation is 2− 2/k. The number of subroutine calls is

Cn
k =

n!

k!(n− k)!
∈ O

(
nk

k!

)
. (27)

4.2 Exercise 4.3

Let G = (V,E) be a graph and w : E → R+ be an assignment of nonnegative
weights to its edges. For u, v ∈ V let f(u, v) denote the weight of a minimum
u− v cut in G.

1. Let u, v, w ∈ V , and suppose f(u, v) ≤ f(u,w) ≤ f(v, w). Show that
f(u, v) = f(u,w), i.e., the two smaller numbers are equal.

14

2. Show that among the
(
n
2

)
values f(u, v), for all pairs u, v ∈ V , there are

at most n− 1 distinct values.

3. Show that for u, v, w ∈ V ,

f(u, v) ≥ min{f(u,w), f(w, v)}

.

4. Show that for u, v, w1, . . . , wr ∈ V

f(u, v) ≥ min{f(u,w1), f(w1, w2), . . . , f(wr, v)}

.

Solution

Part 3: Consider any 3 vertices x, y, z. Then,

f(x, y) ≥ min(f(x, z), f(z, y))

since any x− y must cut z from x or from y.
Part 4: Extending the same idea, consider the path u − w1 − . . . − wr − v.
Then any u, v cut either separates u− w1 or w1 − w2 or . . . or wr − v result in

f(u, v) ≥ min{f(u,w1), f(w1, w2), . . . , f(wr, v)}

which is what we wanted to show.
Part 1 : Assume we have

f(u, v) ≤ f(u,w) ≤ f(v, w)

. Then from above, we have

f(u, v) ≥ min(f(u,w), f(v, w)) = f(u,w)

=⇒ f(u, v) = f(v, w).
Part 2: Construct a graph on V such that we greedily add an edge (u, v) of
weight f(u, v) if f(u, v) is distinct so far. Then, it is clear that there are no
parallel edges.
Assume this graph contains a cycle x1 . . . xnx1 and let f(xk, xk+1) be the small-
est one. Then from part 4, we see that

f(xk, xk+1) ≥ min(f(xk, xk−1), . . . , f(x1, xn), f(xn, xn−1), . . . f(xk+2, fk+1))

. However, this contradicts the minimality of f(xk, xk+1) since all other values
are distinct by construction.
Remark: I feel that the order of questions indicate that there is a different
intended proof for part 2 that does not use part 4 - I’m unsure how to do that.

15

4.3 Exercise 4.4

Let T be a tree on vertex set V with weight function w′ on its edges. We will
say that T is a flow equivalent tree if it satisfies the first of the two Gomory–Hu
conditions. i.e., for each pair of vertices u, v ∈ V , the weight of a minimum u–v
cut in G is the same as that in T . Let K be the complete graph on V . Define
the weight of each edge (u, v) ∈ K to be f(u, v). Show that any maximum
weight spanning tree in K is a flow equivalent tree for G.

Solution

Let T be a max weight spanning tree and consider any (u, v). If e = (u, v) ∈ T ,
then w′(u, v) is the min cut by construction.
If e = (u, v) /∈ T , since T is a tree, the min u − v cut in T is just an edge
(xi, xi+1). In particular, the min cut is the min weight edge in the unique
simple path from u to v - denoted by ux1 . . . xkv. From part 4 above, we have

f(u, v) ≥ min(f(u, x1), . . . f(xk, v)) = w′(xi, xx+1)

. If f(u, v) ≤ w′(xi, xi+1), then f(u, v) = w′(xi, xi+1) and we are done.
Otherwise, assume f(u, v) > w′(xi, xi+1) - then simply removing edge (xi, xi+1)
and adding edge (u, v) (with weight w′(u, v)) results in a spanning tree with
weight function w′ and higher weight - this contradicts the maximality of T .

4.4 Exercise 4.7

Prove that if the Gomory-Hu tree for an edge-weighted undirected graph G
contains all n− 1 distinct weights, then G can have only one minimum weight
cut.

Solution

Let w∗(u, v) represent the weight of the minimum cut separating u, v ∈ V (G).
Then the minimum cut of G has weight

w = min
u,v∈V (G)

w∗(u, v). (28)

Let T be the Gomory-Hu tree of G. We know that

w = min
u,v∈V (G)

w′′(u, v) = min
{u,v}∈E(G)

w′(u, v), (29)

where w′′ denotes the minimum weight of edges on the (unique) path from u
to v in T . Let c ∈ E(T) be the (unique) minimum-weight edge of T , and C
be the corresponding cut of G. It is clear that w′(c) = w. Next, suppose there
is a minimum cut C ′ = (A,B) of G that is not C. In other words, δ(A) =
δ(B) ̸= {c}. We can then pick adjacent a, b ∈ E(T) such that a ∈ A, b ∈ B
and {a, b} ̸= c. As C ′ separates a and b, C ′ ≥ w′(a, b) > w, leading to a
contradiction.

16

5 k-Center

5.1 Exercise 5.1

Show that if the edge costs do not satisfy the triangle inequality, then the k-
center problem cannot be approximated (by a polynomial algorithm) within
factor α(n) for any polynomial-time computable function α(n), assuming P ̸=
NP .

Solution

We show that dominating set can be reduced to α(n)-approximate k-center in
polynomial time. Let I = (G = (V,E), k) be an instance of dominating set. Let
G′ = K|V |. We define the weight function w on E(G′) as follows:

w((u, v)) =

{
1 if (u, v) ∈ E

α(n) + ε if (u, v) /∈ E
. (30)

Suppose I is a yes-instance. Then there exists a collection of vertices D ⊆ V
of size at most k such that for every v ∈ V \D, there exists an edge between v
and D in G. Next, take D as the centers, add arbitrary vertices to it to make
up to size k, and call the resulting collection C. For v ∈ V \ C ′, we have

dG′(v, C) ≤ dG′(v,D) = 1. (31)

Otherwise, if I is a no-instance, for any C ⊆ V of size within k, there exists
v ∈ V such that there is no edge between v and C. Then, by construction,

dG′(v, C) = α(n) + ε > α(n). (32)

Therefore, if I ′ = (G,w, k) of k-center returns a distance within α(n), we can
always deduce that I ′ is a yes-instance, and vice versa.

5.2 Exercise 5.2

Consider Step 2 of Algorithm 5.3, in which a maximal independent set is found in
G2

i . Perhaps a more natural choice would have been to find a minimal dominat-
ing set. Modify Algorithm 5.3 so that Mi is picked to be a minimal dominating
set in G2

i . Show that this modified algorithm does not achieve an approximation
guarantee of 2 for the k-center problem. What approximation factor can you
establish for this algorithm?

Solution

Note that the 2-factor relied on the lower bound

|I| ≤ dom(H)

17

, where I is an independent set in H2. This clearly does not hold if we instead
choose the minimal dominating set.
Instead we will show (with a tight example) that the algorithm achieves a 3
factor.

3-Factor Approximation

Observe that the returned set Mj is a dominating set in G2
j , which implies that

every vertex is at most distance 2rj from some center in Mj , where rj is the
value of r at step j. Thus, the radius ρ of the solution satisfies ρ ≤ 2rj .
It remains to show that rj ≤ 1.5 · OPT. Consider r = 1.5 · OPT. At this
value, G2 = U3·OPT, where Us denotes the graph with edges between vertices
at distance at most s.
The optimal solution partitions the vertices into k clusters

C1, . . . , Ck

, each of diameter at most 2 ·OPT. In U3·OPT, each cluster Ci induces a clique,
since all distances within Ci are at most 2 ·OPT < 3 ·OPT.
Let L be the graph formed by the disjoint union of these k cliques (removing
any inter-cluster edges present in U3·OPT). In L, every minimal dominating set
has size exactly k (one vertex per clique). Thus, the upper domination number
Γ(L) = k.
Adding the inter-cluster edges back to obtain U3·OPT does not increase the upper
domination number, as additional edges make domination easier and can only
render larger sets non-minimal. Therefore,

Γ(U3·OPT) ≤ k

. This means every minimal dominating set in U3·OPT has size at most k.
Regardless of which minimal dominating set the algorithm picks asMi, |Mi| ≤ k.
Thus, the algorithm stops no later than r = 1.5 ·OPT, so

rj ≤ 1.5 ·OPT , ρ ≤ 3 ·OPT

.

Tight Example

The distances are given by a − b = OPT, b − c = OPT, c − d = OPT, a − d =
2OPT, b − d = 2OPT , and each additional vertex has distance 3OPT to d,
with all other distances being the shortest path distances to ensure the metric
property.
In this instance, the optimal solution is to pick a set of k centers from the main
chain a-b-c-d, with radius OPT (adjusted for k > 1 by replicating the structure).

The modified algorithm returns a solution with radius 3OPT because for
thresholds r < 1.5OPT , the graph U2r has the additional vertices isolated (dis-
tances > 2r), so all minimal dominating sets must include all the additional

18

vertices (size n > k), forcing |Mi| > k no matter which one is picked. It contin-
ues until r = 1.5OPT , where the edges to the additional vertices are included,
allowing smaller dominating sets, and the returned Mj has radius 3OPT .

5.3 Exercise 5.3

Let G = (V,E) be a complete undirected graph with edge costs satisfying the
triangle inequality, and let k be a positive integer. The problem is to partition
V into sets V1, ..., Vk so as to minimize the costliest edge between two vertices
in the same set, i.e., minimize

max
1≤i≤k, u,v∈Vi

c(u, v). (33)

(1) Give a factor 2 approximation algorithm for this problem, together with
a tight example.

(2) Show that this problem cannot be approximated within a factor of 2− ε,
for any ε > 0, unless P = NP .

Solution for (1)

Consider the following algorithm:

Algorithm 4: A 2-approximation algorithm for k-cluster.

/* list of heads */
H ← ∅;
/* distance to the nearest head */
D ← an array of size |V |, with each element initialized to +∞;
for i ∈ {1, ..., k} do

ji ← index of the (first) max element in D;
H.append(V [ji]);
for k ∈ {1, ..., |V |} do

D[k]← d(V [k], H);
end

end
return vertices clustered by closest distance to heads in H;

Let H ′ be the final H together with the farthest vertex u from H. As G[H ′]
is a (k + 1)-clique, we get

OPT ≥ h = d(u,H ′). (34)

Let C be a cluster given by the algorithm above and h be its head. For any
two vertices u, v ∈ C, by triangle inequality, we have

d(u, v) ≤ d(u, h) + d(h, v) ≤ 2h ≤ 2 ·OPT. (35)

For a tight example for any given n and k = 2, consider metric closure of
the following graph:

19

Suppose v1 is selected as the first head in the first iteration. Note that every
vertex is of the same distance to v1. As such, it is possible that some other
vertex u in Kn is chosen as the second head. In this case, a possible output by
the algorithm is {u} and (Kn\u)∪{v2, v3} as the two clusters, with a maximum
inter-cluster distance of 4. However, the optimal partition is Kn and {v2, v3},
with a maximum distance of 2.

Solution for (2)

Suppose there exists a (2 − ε)-approximation for metric k-cluster. We reduce
clique cover to it. Consider an instance I = (G = (V,E), k) of (decision) clique
cover. We assign costs c to the edges as follows:

c((u, v)) =

{
1 if {u, v} ∈ E

2 if {u, v} /∈ E.
(36)

It is easy to show that c is a metric. We claim that I is a yes-instance if and
only if the optimal k-cluster of (G, c) has a maximum distance of 1. For the
forward direction, simply taking the cliques as the clusters gives the optimal
solution. Conversely, if the maximum distance within a cluster C is 1, for every
pair of vertices u, v ∈ V (C), (u, v) ∈ E. In other words, C is a clique. This
verifies the reduction.

5.4 Exercise 5.4

(Khuller, Pless, and Sussmann [169]) The fault-tolerant version of the
metric k-center problem has an additional input, α ≤ k, which specifies the
number of centers that each city should be connected to. The problem again is
to pick k centers so that the length of the longest edge used is minimized.
A set S ⊂ V in an undirected graph H = (V,E) is an α-dominating set if each
vertex v ∈ V is adjacent to at least α vertices in S (assuming that a vertex
is adjacent to itself). Let domα(H) denote the size of a minimum cardinality
α-dominating set in H.

1. Let I be an independent set in H2. Show that α|I| ≤ domα(H).

2. Give a factor 3 approximation algorithm for the fault-tolerant k-center
problem.

20

Solution

Part (a)

Let D be a minimum α−dominating set in H. For each v ∈ I, since D is
α−dominating,

|D ∩NH [v]| ≥ α

. If two distinct vertices u, v ∈ I shared a common neighbor w ∈ D, then u, v
would be distance at most 2 ∈ H, contradicting the independence of I in H2.
Therefore, the sets D ∩NH [v] are disjoint. It follows that

|D| ≥ α|I| =⇒ α|I| ≤ domα(H)

.

Part (b)

Algorithm 5: 3 approximation algorithm for fault tolerant k-center
problem

Data: G = (V,E)
Result: fault tolerant k − center S ⊆ V
Sort distances r1 < r2 < . . . < rm between pairs of cities. ;
for i = 1 to m do

Compute G2
i ;

Compute Mi ∈ G2
i ;

if Mi ≤ ⌈ kα⌉ then
if ∀v ∈Mi, deg(v) ≤ α− 1 ∈ Gi then

return (Mi)
end

end

end

From part(a),

I ∈ G(r∗)2 =⇒ α|I| ≤ domα(G(r∗)) ≤ k =⇒ |I| ≤ ⌈ k
α
⌉

, where I is an independent set. Thus for any the optimal radius r∗, any maximal
independent set in G(r∗)2 has size at most ⌈ kα⌉.
The algorithm chooses the smallest j s.t. |Mj | ≤ ⌈ kα⌉ and each vertex in Mj

has degree at most α− 1. This ensures rj ≤ 3r∗.
Since Mj is a maximal independent set in G2

j , every city is within distance 2rj
of some vertex in Mj . Including all closed neighborhoods of the vertices in Mj

ensures that every city within distance 3rj of at least α centers.

21

6 Feedback Vertex Set

6.1 Exercise 6.1

A natural greedy algorithm for finding a minimum feedback vertex set is to
repeatedly pick and remove the most cost-effective vertex, i.e., a vertex mini-
mizing w(v)/δH(v), where H is the current graph, until there are no more cycles
left. Give examples to show that this is not a constant factor algorithm. What
is the approximation guarantee of this algorithm?

Solution

This is similar to the greedy set cover algorithm. Let Gi be the remaining graph
after i removals, with G0 = G being the original graph. Denote by F ∗ the
optimal feedback vertex set. For any i, as Hi = F ∗ ∩ V (Gi) remains a feedback
vertex set for Gi, if we represent by vi the vertex chosen by the algorithm at
the (i+ 1)th iteration, we have

w(vi)

δGi
(vi)
≤ min

v∈Hi

w(v)

δGi
(v)
≤ w(Hi)

δGi
(Hi)

≤ OPT

cyc(Gi)
. (37)

Suppose the algorithm stops after k iterations. Let F = {v1, ..., vk}. Then

w(F) ≤
∑

i∈{0,...,k−1}

(
OPT · δGi

(vi)

cyc(Gi)

)
(38)

= OPT ·

 1

cyc(G0)
+ ...+

1

cyc(G0)︸ ︷︷ ︸
δG0

(v0) times

+ ...+
1

cyc(Gk−1)
+ ...+

1

cyc(Gk−1)︸ ︷︷ ︸
δGk−1

(vk−1) times


(39)

≤ OPT ·
(

1

cyc(G)
+ ...+ 1

)
(40)

∈ O(log(cyc(G))) ·OPT. (41)

We now show that this upper bound is tight by adapting the standard tight
example for set cover. For any arbitrary n, consider the (multi)graph G = (V,E)
defined as follows:

V = {u, o1, ..., on}, (42)

E = {{u, oi} × 2 | i ∈ [n]}. (43)

Assign weights on V as follows:

w(u) = 1, (44)

w(oi) =
1

n− i+ 1
∀i ∈ [n]. (45)

22

Using Theorem 6.2 and Claim 6.3, we have

cyc(G) = |E| − |V |+ comps(G) = 2n− (n+ 1) + 1 = n (46)

δGi
(oi) = degGi

(oi)− comps(Gi − oi) = 2− 1 = 1 ∀i ∈ [n]. (47)

As such, a possible output F given by the algorithm is {o1, ..., ok} with weight
1/n+ ...+ 1, while the optimal solution is {u} with weight 1.

6.2 Exercise 6.2

Give an approximation factor preserving reduction from the vertex cover prob-
lem to the feedback vertex set problem

Solution

Consider the instance G = (V,E,w) of the vertex cover problem. We reduce
it to a feedback vertex set instance G′ = (V,E′, w) simply by duplicating the
edges, that is

E′ = {e1 = {u, v} ∪ e2 = {u, v}|e = {u, v} ∈ E}

. Let ALG1 ⊆ V be the output of this instance G′ with approximation ratio r.
We claim that ALG1, is also an r approximate solution to G.
Feasibility: Consider any e = {u, v} ∈ E =⇒ e1, e2 ∈ E′. It is clear that
either u ∈ ALG1 or v ∈ ALG1, otherwise we have a simple cycle.
Approximation ratio: By assumption,

ALG1 ≤ rOPT (G′)

. It suffices to show that OPT (G) = OPT (G′).
Assume otherwise, then we can simply pick the smaller set and it would be a
feasible solution - contradicting the optimality.

7 Shortest Superstring

7.1 Exercise 7.1

Show that Lemma 7.3 cannot be strengthened to

overlap(r, r′) < max{wt(c), wt(c′)}.

Solution

The lemma relies on the key fact that

overlap(r, r′) ≥ wt(c) + wt(c′) =⇒ α ◦ α′ = α′ ◦ α.

23

This would allow us to cover elements of c and c′ with lesser cost, contradicting
minimality. This is not true if we consider m = max{wt(c), wt(c′)}.
Consider the following example :

S = {”abab”, ”baba”, ”abaa”, ”baab”, ”aaba”}.

Observe that the prefix graph has a minimum weight cycle C : {c, c′} where

c = ”abab”→ ”baba”→ ”abab” , wt(c) = 2,

c′ = ”abaa”→ ”baab”→ ”aaba”→ ”abaa” , wt(c′) = 3.

Choosing representation r = ”baba”, r′ = ”abaa” gives

overlap(r, r′) = 3 ≮ max{2, 3} = 3.

7.2 Exercise 7.2

Obtain constant factor approximation algorithms for the variants of the shortest
superstring problem given in Exercise 2.16.

(a) Find the shortest string that contains, for each string si ∈ S, both si and
sRi as substrings.

(b) Find the shortest string that contains, for each string si ∈ S, either si or
sRi as a substring.

Solution (for (a))

Simply run Algorithm 7 on S = {si, sRi }i∈[n]. It is obvious that the approxima-
tion factor still stays at 3.

Solution (for (b))

Note that (a) already gives a 6-approximation algorithm: let w∗ be the optimal
solution of (b). As w′ = w∗ ◦ (w∗)R is an instance of (a), if w is the output from
(a), we have

|w| ≤ |w′| = 2|w∗| ≤ 6 ·OPT. (48)

8 Knapsack

8.1 Exercise 8.1

Consider the greedy algorithm for the knapsack problem. Sort the objects by
decreasing ratio of profit to size, and then greedily pick objects in this order.
Show that this algorithm can be made to perform arbitrarily badly

24

Solution

Let the knapsack capacity B = n. There are two elements x1, x2 where

profit(x1) = 1 , size(x1) = 1,

profit(x2) = n , size(x1) = n.

The profit to size ratio is 1 in both cases, so the greedy algorithm may sub-
optimally pick x1. This gives us that ratio

r =
OPT

ALG
= n,

which can be arbitrarily bad.

8.2 Exercise 8.2

Consider the following modification to the algorithm given in Exercise 8.1.
Let the sorted order of objects be a1, . . . , an. Find the lowest k such that
the size of the first k objects exceeds B. Now, pick the more profitable of
{a1, . . . , ak−1}, {ak} (we have assumed that the size of each object is at most
B). Show that this algorithm achieves an approximation factor of 2.

Solution

First, it is clear that if all objects can be contained in the knapsack, then this
algorithm will already match the optimal solution.
Consider otherwise, so such k does exist. We first claim that

OPT ≤
k∑

i=1

Profit(ai).

Let the set S = {s1, . . . , sm} selected by OPT in order of profitability of total
size S′ ≤ B. Consider the knapsack as a B-array where each cell c (potentially
empty) is filled by the profitability of si - let this be cell profitability Pc. Then,
by our greedy choice

OPT =

S′∑
i=1

POPT
i

≤
S′∑
i=1

PALG
i ≤

B∑
i=1

PALG
i ≤

S′′∑
i=1

PALG
i

=

k∑
i=1

Profitability(ai) · size(ai) =
k∑

i=1

Profit(ai)

where S′′ is the total size of elements chosen by ALG.
Now, it follows clearly since we are picking the feasible set with better profit
hence it must be at least half of OPT .

25

8.3 Exercise 8.3

Obtain an FPTAS for the following problem.
(Subset-sum ratio problem) Given n positive integers, a1 < ... < an, find

two disjoint nonempty subsets S1, S2 ⊆ {1, ..., n} with
∑

i∈S1
ai ≥

∑
i∈S2

ai,
such that the ratio ∑

i∈S1
ai∑

i∈S2
ai

(49)

is minimized.

Solution

We first obtain a pseudo-polynomial algorithm ALG for the problem. Let Ai =
{a1, ..., ai} for any i ∈ [n] and s =

∑
An. Define the array I for i ∈ {0, ..., n},

s1, s2 ∈ [s] and s1 ≥ s2 as follows:

I[i, s1, s2] = 1[∃S1, S2 ⊆ Ai, S1 ∩ S2 = ∅ :
∑

S1 = s1,
∑

S2 = s2]. (50)

Initialize all entries of I to 0. We fill in the array as follows for all s1, s2 ∈ [s]
and s1 ≥ s2, iterating i from 1 to n:

I[i, s1, s2] = I[i− 1, s1, s2] ∨ I[i− 1, s1 − ai, s2] ∨ I[i− 1, s1, s2 − ai]. (51)

After that, we iterate through all valid pairs of s1 and s2 and find the minimal
s1/s2 where I[n, s1, s2] = 1. The correctness of this algorithm is obvious and
the running time follows O(ns2) = O(n3m2), where m = maxAn.

Inspired by the knapsack FPTAS, we round each ai to the nearest r. Let
âi = ⌈ai/r⌉ and āi = âi · r. Denote the optimal instance for the original and
the reduced instance by (S1, S2) and (S′

1, S
′
2) respectively, where S1, S2, S

′
1, S

′
2

are indices. Observe that

ÔPT =

∑
i∈S′

1
âi∑

i∈S′
2
âi
≤

∑
i∈S1

âi∑
i∈S2

âi
(52)

=⇒ ÔPT ≤
∑

i∈S1
āi∑

i∈S2
āi

=

∑
i∈S1

ai∑
i∈S2

āi
·
∑

i∈S1
āi∑

i∈S1
ai
≤ OPT ·

∑
i∈S1

āi∑
i∈S1

ai
. (53)

Let s1 =
∑

i∈S1
ai. Then the approximation ratio θ in (53) is bounded by

s1 + |S1|r
s1

, (54)

as ai ≥ 1 for all i ∈ [n]. Assume for the moment that an ∈ S1 ∪ S2, in which
case s1 ≥ m. Then

θ ≤ m+ nr

m
= 1 +

n

m
· r. (55)

26

As such, if we let r = εm/n, we obtain an (1+ε)-approximation algorithm with
running time O(n5/ε2). To resolve our non-general assumption, consider that
for any i ∈ {2, ..., n}, if ai is not part of S1 or S2 in the instance of Ai, the
instance of Ai−1 already provides the optimal solution. Define an array R with
n elements and calculate them as follows:

R[1] = ALG(A1), (56)

R[i] = min{R[i− 1], ALG(Ai)} ∀i ∈ {2, ..., n}. (57)

Finally, return R[n] as the output. The time complexity of this procedure is
O(n6/ε2).

8.4 Exercise 8.4

Show that a strongly NP-hard problem cannot have a pseudo-polynomial time
algorithm, assuming P ̸= NP .

Solution

As the textbook does not provide a rigorous definition of strong NP-hardness,
we supplement them below to aid our proof:

1. A problem Π is strongly NP-complete if remains NP-complete when
every input must be given in the form (n, a1, ..., an), where n ∈ N and
a1, ..., an ∈ poly(n).

2. A problem Π is strongly NP-hard if every strongly NP-hard problem
has a pseudo-polynomial reduction to it. That is, if given any strongly
NP-hard problem with input format (n, a1, ..., am), it can be reduced, in
polynomial time, to an instance of Π with input format (m, b1, ..., bm),
where m ∈ poly(n) and bi ∈ poly(ai) for all i.

We now prove the statement. It is obvious that 3SAT is strongly NP-complete,
using the input format (3n, a1,1, a1,2, a1,3, ..., an,1, an,2, an,3), where n is the num-
ber of variables and clauses, and clause i is given by

3∧
j=1

{
xai,j

if ai,j > 0

¬x−ai,j
if ai,j < 0

. (58)

Now suppose we have a strongly NP-hard problem Π. For any given instance of
MAX-3SAT, let (m, b1, ..., bm) be the equivalent instance of Π through a pseudo-
polynomial reduction. If there is a multinomial p such that Π can be solved in
p(m, b1, ..., bm) time, and q, {qi,j} are polynomials such that

m ≤ q(n), (59)

b3(i−1)+j ≤ qi,j(ai,j) ∀i ∈ [n], j ∈ [3], (60)

27

then MAX-3SAT can be solved in

q(p(3n), qi,j(ai,j)) (61)

time. As ai,j is bounded between −3n and 3n, (61) is a polynomial in n.
Obviously, this is impossible unless P = NP .

9 Bin Packing

9.1 Exercise 9.1

Give an example on which First-Fit does at least as bad as 5
3 ·OPT .

Solution

We first define large, medium, small items:

L6 = (
64

126
, . . . ,

64

126
),

M6 = (
43

126
, . . . ,

43

126
),

S6 = (
12

126
, . . . ,

12

126
),

with the input
I = S6 ◦M6 ◦ L6,

that is, 6 items of each cateogry in that order.
Then, the optimal uses 6 bin by packing (L,M,S) in each bin.
For the First-Fit algorithm, it first fits all S items in one bin, say

b1 = (S, S, S, S, S, S) , size = 6 · 12
126

=
72

126
.

It is clear that M , hence L also, can not fit.
The algorithm then fits M6 into 3 new bins b2, b3,

b2, b3 = (M,M) , size = 2 · 43
126

.

Note that any L item can not fit into these bins either. So, the algorithm fits
L6 into 6 new bins.
Therefore, the algorithm uses 1 + 3 + 6 = 10 bins, while OPT uses 6,

=⇒ ALG =
10

6
·OPT.

Remark : I am not sure how to show a tight 2-factor example.

28

9.2 Exercise 9.2

(Johnson [149]) Consider a more restricted algorithm than First-Fit, called Next-
Fit, which tries to pack the next item only in the most recently started bin. If
it does not fit, it is packed in a new bin. Show that this algorithm also achieves
factor 2. Give a factor 2 tight example.

Solution

The factor guarantee is similar to load balancing. Observe that in alg,

size(b2k) + size(b2k+1) > 1.

For OPT , we must have size(b′i) ≤ 1. Since each item is in some unique bin,∑
b∈B

size(b) =
∑
b′∈B′

size(b′)

where B are the bins used in ALG, while B′ are the bins used in OPT .
It follows that

|B| ≤ 2 · |B′|.
To see a tight example, consider

I = (
1

2
,
1

2n
, . . . ,

1

2
,
1

2n
)︸ ︷︷ ︸

4n

.

Then, OPT = n+ 1 by pairing each (12 ,
1
2) in 2n bins, and all the 1

2n s into one
bin.
The Next-Fit algorithm clearly needs n bins for each pair (12 ,

1
2n), so

ALG

OPT
=

2n

n+ 1
= 2− 2

n+ 1
,

which can be arbitrarily close to 2.

9.3 Exercise 9.4

Prove the bounds on R and P stated in Lemma 9.4.

Solution

Let the distinct sizes in the set of items be w1, ..., wK . Each bin configuration
is then a subset of the multiset

{w1 :∞, ..., wK :∞}. (62)

We thus have the bound

R ≤
(
M +K − 1

M − 1

)
≤

(
M +K

M

)
. (63)

The bound on P is obtained similarly.

29

9.4 Exercise 9.6

Prove the following statement made in Lemma 9.5, “A packing for instance J ′

yields a packing for all but the largest Q items of instance J .”

Solution

Let a1, ..., an be the item sizes, where a1 ≤ ... ≤ an. As described, we divide
the items into K groups from smallest to largest, that is, if A1, ..., AK is the
grouping, for i ∈ [K],

Ai = {aj | iQ ≤ j < (i+ 1)Q, j ≤ n}. (64)

For i ∈ [K], define the following operations:

⌊Ai⌋ = {a(i−1)Q+1 : |Ai|}, ⌈Ai⌉ = {aiQ−1 : |Ai|}. (65)

Then J is the instance on ∪i∈[K]⌈Ai⌉, and J ′ is the instance on ∪i∈[K]⌊Ai⌋. If
n ≤ Q, the statement is trivially true. Discard the Q largest items of J and the
Q smallest items of J ′, and name the respective result Ĵ and Ĵ ′. After this,

Ĵ = {⌈A1⌉, ..., ⌈AK−2⌉, B}, Ĵ ′ = {⌊A2⌋, ..., ⌊AK−1⌋}, (66)

where B ⊆ ⌈AK−1⌉. As Ai ≤ Ai+1 (i.e. maxAi ≤ minAi+1) for i ∈ [K − 1], we
have ⌈A1⌉ ≤ ⌊A2⌋, ..., B ≤ ⌊AK−1⌋. In other words, a packing for Ĵ ′ (and thus
J ′) must be a packing for Ĵ , proving the statement.

9.5 Exercise 9.9

(C. Kenyon) Consider the following problem.
(Bin covering) Given n items with sizes a 1, ..., an ∈ (0, 1], maximize the

number of bins opened so that each bin has items summing to at least 1. Give
an asymptotic PTAS for this problem when restricted to instances in which item
sizes are bounded below by c, for a fixed constant c > 0.

Solution

We first provide a polynomial algorithm to a restricted version of the problem
where the number of distinct item sizes is not greater than a constant K ∈ N.
Observe that there must exist an optimal solution such that by removing at
most ⌊1/c⌋ “residual” items, each bin has at most M = ⌈1/c⌉ items. In this
case, each bin has at most R =

(
M+K−1

K

)
configurations. There is at most n bins

in any solution. Therefore, we can obtain an optimal solution by enumerating
at most

f(n, c) =

(
n+R

n

)
∈ poly(n) (67)

cases. (We are putting R configurations into n + 1 bins, with the last bin for
residual items.)

30

Next, given any instance I of bin covering, derive J and J ′ as in Exercise
9.6. We know that ⌈A1⌉ ≤ ⌊A2⌋, ..., B ≤ ⌊AK−1⌋, so J must be a valid bin
covering for Ĵ ′. In other words,

OPT (J ′) +Q ≥ OPT (Ĵ ′) ≥ OPT (J) ≥ OPT (I) (68)

=⇒ OPT (J ′) ≥ OPT (I)−Q ≥ OPT (I)− εOPT (I) = (1− ε)OPT (I). (69)

We have thus obtained the required algorithm.

10 Minimum Makespan Scheduling

10.1 Exercise 10.1

(Graham [114]) The tight example for the factor 2 algorithm, Example 10.4,
involves scheduling a very long job last. This suggests sorting the jobs by
decreasing processing times before scheduling them. Show that this leads to a
4
3 factor algorithm. Provide a tight example for this algorithm.

Solution

The key observation is that now instead of pj < OPT , we have a tighter bound
that pj <

1
3OPT .

To see this, we first claim that that if Mi less than two jobs, then the makespan
is optimal.
Proof: If Mi contains only one job, then it is trivial.
Otherwise Mi contains two jobs, so all other machines Mj also contain at least
one job. Additionally, amongst the first jobs Mj1 of each Mj ,

Mi1 ≤Mj1 .

Clearly, OPT must also assign machine Mi two jobs. If it does not assign pj to
machine Mi, this can only increase the makespan.
Now, assume Mi contains more than two jobs. In particular, we have

OPT ≥Mi1 +Mi2 + . . .Mik , k ≥ 2,

=⇒ OPT ≥ kp.

If k ≥ 3, we are done.
Otherwise assume k = 2 and pj >

OPT
3 . Consider the set of jobs upto pj , then

OPT assigns all these jobs to m processors such that each processor has at most
2 jobs - in particular, each machine has load more than Mi1 +Mi2 ≥ 2pj . This
is a contradiction since we would have a machine with load

L = 3pj > 3 · OPT

3
= OPT.

Thus, we have that pj ≤ OPT
3 hence it follows

ALG = Mi1 + . . .Mik + pj ≤ OPT +
OPT

3
=

4

3
·OPT.

31

To see a tight example, consider the input of 2m+ 1 processes

I = {2m− 1, 2m− 1, 2m− 2, 2m− 2, . . .m+ 1,m+ 1,m,m,m}.

Then, the greedy algorithm returns

{2m− 1,m,m}, {2m− 1,m}, . . . , {3
2
m,

3

2
m− 1},

with maximum makespan 4m− 1. We can instead assign as follows:

{m,m,m}, {2m− 1,m+ 1}, . . . , {3
2
m,

3

2
m}

which achieves a maximum makespan of 3m. In particular,

ALG

OPT
≥ 4

3
− 1

3m
.

10.2 Exercise 10.2

(Horowitz and Sahni) Give an FPTAS for the variant of the minimum makespan
scheduling problem in which the number of machines, m, is a fixed constant.

Solution

We first present a pseudo-polynomial dynamic programming algorithm for mini-
mummakespan scheduling on a given upper boundM on the minimummakespan.
We then round each job in a similar manner as in knapsack.

Let Pi = {p1, ..., pi}. Each entry in the dynamic programming table dp is
defined as follows:

dp[i, ℓ1, ..., ℓm] = 1[(ℓ1, ..., ℓm) is a valid scheduling of Pi], (70)

for i ∈ {1, ..., n} and 0 ≤ ℓ1, ..., ℓm ≤M . To fill dp, initialize all dp entries to 0.
Set dp[1, p1, ..., 0], ...,dp[1, 0, ..., p1] to 1. After that, for i ∈ {2, ..., n}, we fill dp
for ℓ1, ..., ℓm ≤M as follows:

dp[i, ℓ1, ..., ℓm] = dp[i− 1, ℓ1 − pi, ..., ℓm] ∨ ... ∨ dp[i− 1, ℓ1, ..., ℓm − pi]. (71)

After the dynamic programming is complete, scan through dp[n] and obtain an
1-entry with minimal makespan. The correctness of this algorithm is trivial and
its running time is O(n ·Mm).

Next, round up each job to the nearest r, the exact value of which will
be derived later. Let p̂i = ⌈pi/r⌉ and p̄i = r · p̂i. Denote by S and S̄ the
optimal schedules of P = {p1, .., pn} and P̄ = {p̄1, ..., p̄n} respectively, with
OPT = maxS and OPT = max S̄. It is easy to see that

p̄i ≤ pi + r =⇒ OPT ≤ OPT + nr. (72)

32

Therefore, if we fix r = ε · LB/n and M = 2LB/r, we get an error bound of

nr = ε · LB ≤ ε ·OPT, (73)

and a running time of

O(n ·Mm) = O(n · (2LB/r)m) = O(2m · n · (n/ε)m) = O(2m · nm+1/εm).
(74)

11 Euclidean TSP

11.1 Exercise 11.1

Show that we may assume that the length of the bounding square can be taken
to be L = 4n2 and that there is a unit grid defined on the square such that each
point lies on a gridpoint.

Solution

Scale all coordinates by the factor α = 4n2

S . Distances and OPT scale by the
same factor, so it suffices to prove the statement for the scaled instance. From
now on the bounding square is fixed and its side length equals L = 4n2.
Next, we choose a fine grid (spacing δ) inside the fixed square. Let

δ :=
L

2
√
2n3

.

Note that δ > 0 and this choice does not change the bounding square - it only
defines a grid of spacing δ inside the (fixed) square of side L.
Then, we ”snap” each point to the nearest grid point and bound the error.
Each original point is moved by at most half a cell diagonal, so the Euclidean

displacement of any point is at most
√
2
2 δ. We have

increase per point ≤ 2 ·
√
2

2
δ =
√
2δ.

Thus, for all points,
∆ ≤ n ·

√
2δ.

Substitute the chosen δ:

∆ ≤ n
√
2 · L

2
√
2n3

=
L

2n2
.

It clear that OPT ≥ L. So,

∆ ≤ L

2n2
≤ OPT

2n2
≤ OPT

n2
.

Thus snapping to the δ-grid increases the optimal tour length by at most OPT
n2 .

Finally, multiply all coordinates by the factor 1
δ . This transforms the δ-grid into

33

a unit (integer) grid, and it multiplies all lengths (including OPT and the error
∆) by the same factor.

Combining the steps above, we obtain a scaled instance with a unit integer
grid containing every point, and moving all points to grid points increases the
optimal tour length by at most OPT

n2 , as required.

11.2 Exercise 11.2

Provide the missing details in the proof of Lemma 11.3.

Solution

Below we provide a rigorous and detailed dynamic programming formulation
that finds the optimal well-behaved tour w.r.t. the basic dissection with limited
crossings. Call a tour (on all nodes and a subset of the portals) “good” if
it matches the above description. Consider a good tour τ . For the sake of
convenience, assuming that τ never “walks along” the boundary of s (denoted
∂s), i.e. the set τ ∩ ∂s is finite. We can ensure this by perturbing τ by an
infinitesimal length towards either side of a gridline.

Given any square s, τ ∩ s is a collection W of paths, and for each path w, it
has an entry portal entry(w) and exit portal exit(w). Exclude the cases when w
only touches s but does not enter it, i.e. w is a point, because they are irrelevant
analysis. We say a portal p is used once for every instance where there is a path
w such that entry(w) = p or exit(w) = p. As τ is well-behaved, paths in W
do not self-intersect in the interior of s, which means W is planar. As a result,
if we walk along ∂s in any orientation starting from any point, the pairings of
the portals never interleave. That is, there are no two distinct pairs p1, p2 and
q1, q2 such that p1, q1, p2, q2 is the order they appear. Due to limited crossings,
each portal can be used 0, 1 or 2 times. This gives 34m combinations. For each
combination where total usage r is even, the number of non-interleaving pairings
is given by the (r/2)th Catalan number, Cr/2. To restore W from pairings, we

would also need the directions of its paths, totaling 2r/2 possibilities. Therefore,
the number of good W -s (up to the directions and endpoints of paths) is given
by ∑

usage|r is even

Cr/2 · 2r/2 ≤ 34m · C4m · 24m = 64m · C4m ∈ nO(1/ε), (75)

as r ≤ 2 · 4m = 8m.
The dynamic programming operates on a table dp. Each entry

dp[s, U,M,Φ] (76)

is defined to be the minimum length of a good W on s where usages of portals
follow U , the matchings are given by M , and their directions given by Φ. The
table is built bottom-up, with the base case being when s is a unit square. There
are two cases:

34

1. There is no node in s. (After initial perturbation, all nodes lie on a
gridpoint. Arbitrarily assign which square it belongs to.) Then simply
connect each pair in M with a straight line and calculate the cost.

2. Otherwise, still connect pairs in M with straight lines. s is now divided
into |M | + 1 regions. Let the (p1, p2) and (q1, q2) be the two pairs of
portals bounding the node. Observe that as s lives on ∂s, other portals
trying to connect with the node would necessarily cross (p1, p2) or (q1, q2),
regardless of the selection of paths. Therefore, simply try breaking the line
between the two pairs to connect the node and report the shorter path.

For any non-unit s, let s1, ..., s4 be its children. We say that a combination
of configurations {(si, Ui,Mi,Φi)}i∈[4] is compatible with (s, U,M,Φ) if their
portal usage and matching directions match, and the configurations do not
induce an internal cycle. The latter can be prevented by making sure that no
portal on the inner lines is an entry and an exit simultaneously. Its dp entries
are then given by:

dp[s, U,M,Φ] = min
{(si, Ui,Mi,Φi}i∈[4] are compatible

4∑
i=1

dp[si, Ui,Mi,Φi]. (77)

The correctness of the algorithm can easily be shown by induction. We now
analyze its running time. Calculating each entry in the base case obviously takes
constant time. As for the inductive case, note that the two level (i + 1) lines
contained in s (the inner lines) have at most 4m portals on them. Note that
once portal usages have been fixed, setting the matchings and their directions in
one child square automatically fixes the others. Therefore, the number of cases
we need to consider is bounded by

38m · Cr/2 · 2r/2 = 38m · C4m · 24m ∈ nO(1/ε). (78)

Putting all of the above together, the running time is therefore in(
O(nO(1/ε))

)2
= O(nO(1/ε)). (79)

11.3 Exercise 11.4

Prove Lemma 11.4.

Solution

As nodes have been snapped to gridpoints, LHS exactly measures the ℓ1 length
of π, except when a segment of π runs horizontally or vertically. In the usual
case, the bounding factor of

√
2 applies. In the special case, π touches (once)

a grid intersection for every vertical (resp. vertical) gridline it crosses, so the
bounding factor is 2. This proves the lemma.

35

11.4 Exercise 11.6

Generalize the algorithm to norms other than the Euclidean norm.

Solution

The algorithm generalizes to Lp norms for p ≥ 1 naturally.
The correctness and analysis follows analogously.

Scale and translate points so bounding box is [0, L]× [0, L] with
L = 4n2 ;

Snap each point to nearest integer grid point (Exercise 11.1) ;

Let k = 2 + ⌈log2 n⌉, L← 2k (Adjust to power of 2) ;

m← smallest power of 2 in [kϵ ,
2k
ϵ] ;

Build basic dissection tree T of depth k;

For each line in dissection, place portals L
2im apart for level i lines;

Initialize DP table for all useful squares;
for level i from k down to 0 do

for each useful square S at level i do
for each valid visit V of S’s portals do

if S is leaf (unit square) then
Compute optimal paths for points inside S with portal
constraints;

end
else

Consider all portal usage patterns on S’s four internal
sides;

Consider all valid pairings consistent with V ;
Compute minimum cost from children’s DP entries;

end

end

end

end
return Tour from root’s DP entry with all points covered

Remark: In fact, the algorithm extends to any norm that is Lipschitz equiv-
alent to the Euclidian norm (within a constant factor of the Eucldien norm).
Particularly, we need convexity so that short cutting works, and translation in-
variance so that we can move the points. This means for example Lp norms for
0 < p < 1 will fail.

36

	Introduction
	Exercise 1.1
	Exercise 1.2
	Exercise 1.3
	Exercise 1.7
	Exercise 1.8

	Set Cover
	Exercise 2.1
	Exercise 2.2
	Exercise 2.13
	Exercise 2.14

	Steiner Tree and TSP
	Exercise 3.1
	Exercise 3.3
	Exercise 3.5
	Exercise 3.6

	Multiway Cut and k-Cut
	Exercise 4.1
	Exercise 4.3
	Exercise 4.4
	Exercise 4.7

	k-Center
	Exercise 5.1
	Exercise 5.2
	Exercise 5.3
	Exercise 5.4

	Feedback Vertex Set
	Exercise 6.1
	Exercise 6.2

	Shortest Superstring
	Exercise 7.1
	Exercise 7.2

	Knapsack
	Exercise 8.1
	Exercise 8.2
	Exercise 8.3
	Exercise 8.4

	Bin Packing
	Exercise 9.1
	Exercise 9.2
	Exercise 9.4
	Exercise 9.6
	Exercise 9.9

	Minimum Makespan Scheduling
	Exercise 10.1
	Exercise 10.2

	Euclidean TSP
	Exercise 11.1
	Exercise 11.2
	Exercise 11.4
	Exercise 11.6

